Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Medicine (Baltimore) ; 103(16): e37860, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640320

RESUMO

Staphylococcus aureus is an important human pathogen that has a major impact on public health. The objective of the present work was to determine the prevalence and the pattern of antibiotic susceptibility in S aureus (MRSA) isolates from the King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia. The isolates were collected from different body sites of infection and the antibiotic susceptibility was confirmed on the Vitek 2 system. A total of 371 MRSA isolates from clinical samples were received over a 12-month period from January 2021 to December 2021. The results showed that infection was predominant among males (55.8%) and most of the isolates occurred in the older age groups, with a mean age of 43.7 years and an age span from <1 to 89 years old. The majority (34.5%) recovered from wound infection followed by (14.6%) from blood. We have observed peaks of MRSA infections during the autumn, especially in September and November. All MRSA isolates were resistant to Amoxicillin + clavulanic acid, Ampicillin, Imipenem, Oxacillin, Cloxacillin, and Penicillin while all isolates were sensitive to Daptomycin and Nitrofurantoin. Furthermore, Vancomycin was resistant in (0.3%) of MRSA isolates, and (2.9%) was resistant to Linezolid. The current study concluded that MRSA strains had developed resistance toward 24 tested antibiotics, including the previous effective drugs vancomycin and linezolid. Therefore, there is an urgent need for continuous review of infection control practices to prevent any further spread of resistant strains.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Masculino , Humanos , Idoso , Adulto , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Vancomicina/farmacologia , Linezolida/farmacologia , Arábia Saudita/epidemiologia , Centros de Atenção Terciária , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia
2.
PLoS Negl Trop Dis ; 18(4): e0011867, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573915

RESUMO

BACKGROUND: Buruli ulcer (BU) is a skin neglected tropical disease (NTD) caused by Mycobacterium ulcerans. WHO-recommended treatment requires 8-weeks of daily rifampicin (RIF) and clarithromycin (CLA) with wound care. Treatment compliance may be challenging due to socioeconomic determinants. Previous minimum Inhibitory Concentration and checkerboard assays showed that amoxicillin/clavulanate (AMX/CLV) combined with RIF+CLA were synergistic against M. ulcerans. However, in vitro time kill assays (TKA) are a better approach to understand the antimicrobial activity of a drug over time. Colony forming units (CFU) enumeration is the in vitro reference method to measure bacterial load, although this is a time-consuming method due to the slow growth of M. ulcerans. The aim of this study was to assess the in vitro activity of RIF, CLA and AMX/CLV combinations against M. ulcerans clinical isolates by TKA, while comparing four methodologies: CFU enumeration, luminescence by relative light unit (RLU) and optical density (at 600 nm) measurements, and 16S rRNA/IS2404 genes quantification. METHODOLOGY/PRINCIPAL FINDINGS: TKA of RIF, CLA and AMX/CLV alone and in combination were performed against different M. ulcerans clinical isolates. Bacterial loads were quantified with different methodologies after 1, 3, 7, 10, 14, 21 and 28 days of treatment. RIF+AMX/CLV and the triple RIF+CLA+AMX/CLV combinations were bactericidal and more effective in vitro than the currently used RIF+CLA combination to treat BU. All methodologies except IS2404 quantitative PCR provided similar results with a good correlation with CFU enumeration. Measuring luminescence (RLU) was the most cost-effective methodology to quantify M. ulcerans bacterial loads in in vitro TKA. CONCLUSIONS/SIGNIFICANCE: Our study suggests that alternative and faster TKA methodologies can be used in BU research instead of the cumbersome CFU quantification method. These results provide an in vitro microbiological support to of the BLMs4BU clinical trial (NCT05169554, PACTR202209521256638) to shorten BU treatment.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Humanos , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Rifampina/farmacologia , Rifampina/uso terapêutico , Mycobacterium ulcerans/genética , RNA Ribossômico 16S , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Úlcera de Buruli/tratamento farmacológico , Úlcera de Buruli/microbiologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico
3.
Lancet Microbe ; 5(4): e355-e365, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432233

RESUMO

BACKGROUND: Antimicrobials cause perturbations in the composition and diversity of the host microbiome. We aimed to compare gut microbiome perturbations caused by oral tebipenem pivoxil hydrobromide (a novel carbapenem) and by amoxicillin-clavulanic acid (an orally administered ß-lactam-ß-lactam inhibitor combination widely used in clinical practice). METHODS: We did a phase 1, single-centre, randomised, parallel-group, active-control trial to evaluate the effect of tebipenem pivoxil hydrobromide on the human gut microbiota. Healthy participants aged 18 years or older with no documented illnesses during recruitment were enrolled at Karolinska University Hospital (Stockholm, Sweden). Study participants were stratified by sex and block-randomised in a 1:1 ratio to treatment with either tebipenem pivoxil hydrobromide (600 mg orally every 8 h) or amoxicillin-clavulanic acid (500 mg amoxicillin and 125 mg clavulanic acid orally every 8 h). The study included 10 days of treatment (days 1-10) and four follow-up visits (days 14, 21, 90, and 180). The trial was open-label for clinical investigators and patients, but masked for microbiology investigators. Faecal samples were collected at all visits. Sequencing of 16S rDNA was used to measure the diversity metrics, and quantitative culture to quantify selected taxa. The primary outcomes were changes in the α and ß diversity and log count of colony-forming units for selected taxa between samples compared with baseline (day 1), and whether any changes reverted during the follow-up period. The analyses were done in the intention-to-treat population. This study was registered with ClinicalTrials.gov (NCT04376554). FINDINGS: The study was conducted between Jan 23, 2020, and April 6, 2021. 49 volunteers were screened for eligibility, among whom 30 evaluable participants (14 men and 16 women) were assigned: 15 (50%) to the tebipenem pivoxil hydrobromide group and 15 (50%) to the amoxicillin-clavulanic acid group. Baseline characteristics were similar between groups. Complete follow-up was available for all participants, and all participants except one completed treatment as assigned. The diversity metrics showed significant changes from baseline during the treatment period. Significant decreases in richness were observed on days 4-10 (p≤0·0011) in the amoxicillin-clavulanic acid group and on days 4-14 (p≤0·0019) in the tebipenem pivoxil hydrobromide group. Similarly, evenness was significantly decreased during treatment in the amoxicillin-clavulanic acid group (day 4, p=0·030) and the tebipenem pivoxil hydrobromide group (days 4-10, p<0·0001) compared with baseline. Quantitative cultures showed significant decreases in Enterobacterales (days 4-7, p≤0·0030), Enterococcus spp (days 4-14, p=0·025 to p<0·0001), Bifidobacterium spp (days 2-4, p≤0·026), and Bacteroides spp (days 4-10, p≤0·030) in the tebipenem pivoxil hydrobromide group. Similarly, in amoxicillin-clavulanic acid recipients, significant changes were observed in Enterobacterales (days 4-10, p≤0·048), Bifidobacterium spp (days 2-4, p≤0·013), and Lactobacillus spp (days 2-4, p≤0·020). Samples from the follow-up period were not significantly different from those at baseline in ß diversity analysis (PERMANOVA, p>0·99). By the end of the study, no significant change was observed compared with baseline in either group. There were no deaths or severe adverse events. INTERPRETATION: The impact of tebipenem pivoxil hydrobromide on the gut microbiome was similar to that of amoxicillin-clavulanic acid. The safety of antibiotic use with regard to the microbiome should be given attention, as dysbiosis is associated with health and disease. FUNDING: Spero Therapeutics.


Assuntos
Carbapenêmicos , Microbioma Gastrointestinal , Masculino , Adulto , Humanos , Feminino , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Suécia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Monobactamas
4.
Int J Pharm ; 652: 123821, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242259

RESUMO

The development of effective strategies against multidrug-resistant (MDR) pathogens is an urgent need in modern medicine. Nanoantibiotics (nABs) offer a new hope in countering the surge of MDR-pathogens. The aim of the current study was to evaluate the antibacterial activity of two attractive nABs, TiO2 NPs and ZnO NPs, and their performance in improving the antimicrobial activity of defined antibiotics (amoxicillin-clavulanic acid, amox-clav) against MDR-pathogens. The nABs were synthesized using a green method. The physicochemical characteristics of the synthesized nanoparticles were determined using standard methods. The results showed the formation of pure anatase TiO2 NPs and hexagonal ZnO NPs with an average particle size of 38.65 nm and 57.87 nm, respectively. The values of zeta potential indicated the high stability of the samples. At 8 mg/mL, both nABs exhibited 100 % antioxidant activity, while ZnO showed significantly higher activity at lower concentrations. The antibiofilm assay showed that both nABs could inhibit the formation of biofilms of Acinetobacter baumannii 80 and Escherichia coli 27G (MDR-isolates). However, ZnO NPs showed superior antibiofilm activity (100 %) against E. coli 27G. The MIC values were determined to be 8 (1), 2 (2), and 4 (4) mg/mL for amox-clav, TiO2 NPs, and ZnO NPs against A. baumannii 80 (E. coli 27G), respectively. The results showed that both nABs had synergistically enhanced antibacterial performance in combination with amox-clav. Specifically, an 8-fold reduction in MIC values of antibiotics was observed when they were combined with nABs. These findings highlight the potential of TiO2 NPs and ZnO NPs as effective nanoantibiotics against MDR-pathogens. The synergistic effect observed when combining nABs with antibiotics suggests a promising approach for combating antibiotic resistance. Further research and development in this area could lead to the development of more effective treatment strategies against MDR infections.


Assuntos
Anti-Infecciosos , Fármacos Dermatológicos , Nanopartículas Metálicas , Óxido de Zinco , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Fármacos Dermatológicos/farmacologia , Vitaminas , Expectorantes , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
5.
BMC Microbiol ; 23(1): 298, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864176

RESUMO

BACKGROUND: Hospital infections such as ventilator-associated pneumonia (VAP) due to multidrug-resistant Klebsiella pneumoniae (MDR-KP) strains have increased worldwide. In addition, biofilm production by these resistant isolates has confronted clinicians with higher treatment failure and infection recurrence. Given the paucity of new agents and limited data on combination therapy for MDR-KPs, the present study sought to evaluate the in vitro activity of several antibiotic combinations against planktonic and biofilm MDR-KPs isolated from patients with VAP. RESULTS: All 10 carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates demonstrated multidrug resistance against the tested antibiotics. At planktonic mode, combinations of colistin-meropenem and amoxicillin/clavulanate in combination with meropenem, colistin, or amikacin showed synergism against 60-70% isolates. On the other hand, in the biofilm state, colistin-based combinations exhibited synergism against 50-70% isolates and the most effective combination was colistin-amikacin with 70% synergy. CONCLUSIONS: The results revealed that combinations of amoxicillin/clavulanate with colistin, meropenem, or amikacin in the planktonic mode and colistin with amoxicillin/clavulanate, meropenem, or amikacin in the biofilm mode could effectively inhibit CRKP isolates, and thus could be further explored for the treatment of CRKPs.


Assuntos
Infecções por Klebsiella , Pneumonia Associada à Ventilação Mecânica , Humanos , Meropeném/farmacologia , Colistina/farmacologia , Amicacina/farmacologia , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Klebsiella pneumoniae , Sinergismo Farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Testes de Sensibilidade Microbiana
6.
Bull Exp Biol Med ; 175(5): 649-652, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37861906

RESUMO

The aim of the study was to evaluate the activity of Raphamin in a model of non-lethal pneumococcal infection caused by Streptococcus pneumoniae 3 in BALB/c mice. The drug or placebo was administered intragastrically 3 days prior to infection, 2 h before and 2 h post infection, and then for 3 full days, alone or in combination with antibiotic (amoxicil-lin/clavulanic acid). Raphamin monotherapy significantly decreased bacterial load in the lungs in comparison with placebo (p<0.05) which was comparable to the effect in antibiotic alone or combined with Raphamin. Raphamin prevented reproduction of Streptococcus pneumoniae in the lower respiratory tract and its combination with the antibiotic was safe and did not reduce the efficacy of amoxicillin/clavulanic acid.


Assuntos
Infecções Pneumocócicas , Camundongos , Animais , Infecções Pneumocócicas/tratamento farmacológico , Streptococcus pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Ácido Clavulânico/farmacologia , Ácido Clavulânico/uso terapêutico
7.
Georgian Med News ; (338): 63-68, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37419473

RESUMO

The Aloe vera plant is a cactus-like plant in the Liliacea family that has been known and utilized for its medical benefits. It has been attempted to be used as a remineralizing agent and shows an antibacterial effect. Aim of the study - assessment of the remineralizing effect of solution of saturated Aloe vera gel compared to distal water by microhardness Vickers test and Densometric X-Ray Analysis and effect of Aloe vera gel against Enterococcus faecalis. 10 extracted permanent molars were used in this in vitro study. each tooth enrolls in Teflon tape and only the enamel of the occlusal surface was exposed to a demineralizing solution (acid etch) for 45 seconds in-vitro and randomly assigned to two groups: Group 1 was treated with distal water; group 2 was treated with Aloe vera gel. All groups except the control baseline group were treated with their respective remineralizing solution for 10 days. Vicker's Microhardness Number (VHN) and Densometric X-Ray Analysis were carried out at baseline, post-demineralization and later post 10 days of remineralization. The antibacterial effect of Aloe vera gel was assessed by the disc diffusion method. The filter paper was immersed in 20µl of different concentrations of Aloe vera gel extract as fresh Aloe vera (100 %) and (50 % and 25 %) diluted with de-ionized water after that the disc was distributed in a plate containing the E. faecalis. Antibiotics disc of Augmentin (Amoxicillin and Clavulanic acid 30ug) were also poured in the same plate and incubated at 37°C for 24 hours and the zone of inhibition of antibiotic was measured for comparison with a zone of inhibition of filter paper saturated with Aloe vera gel. Densitometric X-Ray Analysis and Microhardness Number (VHN) evaluation showed improvement in the enamel density and the surface hardness after remineralization. The mean value in the group treated with Aloe vera solution was higher than the recorded mean value for the group treated with distal water. There was a significant difference between Aloe vera solution and distal water. Significant (p-value≤0.05) after 10 days. The antibacterial effect showed that E. faecalis was resistant to Aloe vera gel in different concentrations compared with Augmentin (Amoxicillin and Clavulanic acid 30ug). Aloe vera gel could be used for caries prevention in terms of safety and efficiency. While E. faecalis show resistance activity against Aloe vera gel.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Enterococcus faecalis , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Amoxicilina/farmacologia
8.
J Antimicrob Chemother ; 78(8): 1909-1920, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37294541

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus pseudintermedius (MRSP) lineages harbouring staphylococcal cassette chromosome (SCC) mec types IV, V and ΨSCCmec57395 usually display low oxacillin MICs (0.5-2 mg/L). OBJECTIVES: To evaluate how oxacillin MICs correlate with PBP mutations and susceptibility to ß-lactams approved for veterinary use. METHODS: Associations between MICs and PBP mutations were investigated by broth microdilution, time-kill and genome sequence analyses in 117 canine MRSP strains harbouring these SCCmec types. Clinical outcome was retrospectively evaluated in 11 MRSP-infected dogs treated with ß-lactams. RESULTS: Low-level MRSP was defined by an oxacillin MIC <4 mg/L. Regardless of strain genotype, all low-level MRSP isolates (n = 89) were cefalexin susceptible, whereas no strains were amoxicillin/clavulanate susceptible according to clinical breakpoints. Exposure to 2× MIC of cefalexin resulted in complete killing within 8 h. High (≥4 mg/L) oxacillin MICs were associated with substitutions in native PBP2, PBP3, PBP4 and acquired PBP2a, one of which (V390M in PBP3) was statistically significant by multivariable modelling. Eight of 11 dogs responded to systemic therapy with first-generation cephalosporins (n = 4) or amoxicillin/clavulanate (n = 4) alone or with concurrent topical treatment, including 6 of 7 dogs infected with low-level MRSP. CONCLUSIONS: Oxacillin MIC variability in MRSP is influenced by mutations in multiple PBPs and correlates with cefalexin susceptibility. The expert rule recommending that strains with oxacillin MIC ≥0.5 mg/L are reported as resistant to all ß-lactams should be reassessed based on these results, which are highly clinically relevant in light of the shortage of effective antimicrobials for systemic treatment of MRSP infections in veterinary medicine.


Assuntos
Doenças do Cão , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Cães , Animais , Cefalexina , Resistência a Meticilina , Estudos Retrospectivos , Doenças do Cão/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Oxacilina/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
9.
J Stomatol Oral Maxillofac Surg ; 124(6S): 101502, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37192700

RESUMO

Antibiotics-chemotherapeutics combination have become on the table for many cancer treatments. For this reason, we thought that further progress and development of studies to support chemotherapeutic approaches with the use of antibiotics may be beneficial in the clinical field. Cell lines (SCC-15, HTB-41, and MRC-5) were treated with 5-100 µM/ml concentrations of cisplatin (cisp) and amoxicillin/clavulanic acid (amx/cla) with combination (amx/cla-cisp) and alone in three different incubation periods. The all-cells viability was examined with WST-1 and apoptotic activity of the drugs were investigated via cell death ELISA assay kit. The cytotoxic impact of the 100 µM amx/cla-cisp combination was found to be reduced by up to 21.8%, which was significant given that the cytotoxic effect of only cisplatin therapy was 86.1%. Because our findings demonstrated that solo amx/cla therapy have almost no impact on proliferation or death, we focused on the amx/cla-cisp combination effect. It was found that the amx/cla-cisp combination has reduced the apoptotic fragment when comparing with the solely cisp-treated cells. Due to amx/cla-cisp combination on both cells but significantly on SCC-15 recovered the sole cisplatin effect, we believe that there might be a second thought when prescribing antibiotics while treating cancer patients. Not only the antibiotic's type but also the cancer type might interact to lessen the chemotherapeutic agent's impact which is clinically a dilemma to focus on.


Assuntos
Antineoplásicos , Neoplasias Bucais , Humanos , Cisplatino/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Bucais/tratamento farmacológico
10.
Biofouling ; 39(2): 135-144, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37013808

RESUMO

This study evaluated the effect of the iron chelator deferiprone (DFP) on antimicrobial susceptibility and biofilm formation and maintenance by Burkholderia pseudomallei. Planktonic susceptibility to DFP alone and in combination with antibiotics was evaluated by broth microdilution and biofilm metabolic activity was determined with resazurin. DFP minimum inhibitory concentration (MIC) range was 4-64 µg/mL and in combination reduced the MIC for amoxicillin/clavulanate and meropenem. DFP reduced the biomass of biofilms by 21 and 12% at MIC and MIC/2, respectively. As for mature biofilms, DFP reduced the biomass by 47%, 59%, 52% and 30% at 512, 256, 128 and 64 µg/mL, respectively, but did not affect B. pseudomallei biofilm viability nor increased biofilm susceptibility to amoxicillin/clavulanate, meropenem and doxycycline. DFP inhibits planktonic growth and potentiates the effect of ß-lactams against B. pseudomallei in the planktonic state and reduces biofilm formation and the biomass of B. pseudomallei biofilms.


Assuntos
Burkholderia pseudomallei , Meropeném/farmacologia , Deferiprona/farmacologia , Ferro/farmacologia , Ferro/metabolismo , Biofilmes , Antibacterianos/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Testes de Sensibilidade Microbiana , Quelantes de Ferro/farmacologia
11.
Oral Health Prev Dent ; 21(1): 93-102, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37014213

RESUMO

PURPOSE: Antibiotics play an important role in treating periodontal diseases. Due to the effectiveness of antibiotic therapies, their usage in dentistry has significantly increased. The aim of this study focused on the in-vitro susceptibility of different gram-negative oral bacteria species - which are associated with periodontal diseases (Fusobacterium spp., Capnocytophaga spp. and Leptotrichia buccalis) and have different geographical origins (Asia and Europe) - against antimicrobials that are clinically relevant in dental therapy. MATERIALS AND METHODS: A total of 45 strains were tested (29 Fusobacterium spp., 13 Capnocytophaga spp. and 3 L. buccalis) that were either isolated from Chinese patients or were obtained from different strain collections. Their antimicrobial susceptibility to the antimicrobial agents benzylpenicillin, amoxicillin, amoxicillin-clavulanic acid, ciprofloxacin, moxifloxacin, clindamycin, doxycycline, tetracycline and metronidazole was tested using the E-Test. Strains with particular resistance to penicillin, clindamycin and metronidazole were further analysed for resistance genes. RESULTS: All tested bacterial isolates were sensitive to amoxicillin, amoxicillin-clavulanic acid, doxycycline and tetracycline, but showed variable sensitivity towards other antibiotics such as benzylpenicillin, ciprofloxacin, moxifloxacin, clindamycin and metronidazole. CONCLUSION: The results of the present study suggest that certain periodontal disease-related bacterial strains can be resistant towards antimicrobial agents commonly used in adjuvant periodontal therapy.


Assuntos
Anti-Infecciosos , Leptothrix , Doenças Periodontais , Humanos , Clindamicina , Metronidazol , Capnocytophaga , Doxiciclina , Fusobacterium , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Moxifloxacina , Leptotrichia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Amoxicilina/farmacologia , Amoxicilina/uso terapêutico , Ciprofloxacina
12.
Microbiome ; 11(1): 73, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032359

RESUMO

BACKGROUND: Effects of antibiotics on gut bacteria have been widely studied, but very little is known about the consequences of such treatments on the fungal microbiota (mycobiota). It is commonly believed that fungal load increases in the gastrointestinal tract following antibiotic treatment, but better characterization is clearly needed of how antibiotics directly or indirectly affect the mycobiota and thus the entire microbiota. DESIGN: We used samples from humans (infant cohort) and mice (conventional and human microbiota-associated mice) to study the consequences of antibiotic treatment (amoxicillin-clavulanic acid) on the intestinal microbiota. Bacterial and fungal communities were subjected to qPCR or 16S and ITS2 amplicon-based sequencing for microbiota analysis. In vitro assays further characterized bacterial-fungal interactions, with mixed cultures between specific bacteria and fungi. RESULTS: Amoxicillin-clavulanic acid treatment triggered a decrease in the total fungal population in mouse feces, while other antibiotics had opposite effects on the fungal load. This decrease is accompanied by a total remodelling of the fungal population with the enrichment in Aspergillus, Cladosporium, and Valsa genera. In the presence of amoxicillin-clavulanic acid, microbiota analysis showed a remodeling of bacterial microbiota with an increase in specific bacteria belonging to the Enterobacteriaceae. Using in vitro assays, we isolated different Enterobacteriaceae species and explored their effect on different fungal strains. We showed that Enterobacter hormaechei was able to reduce the fungal population in vitro and in vivo through yet unknown mechanisms. CONCLUSIONS: Bacteria and fungi have strong interactions within the microbiota; hence, the perturbation initiated by an antibiotic treatment targeting the bacterial community can have complex consequences and can induce opposite alterations of the mycobiota. Interestingly, amoxicillin-clavulanic acid treatment has a deleterious effect on the fungal community, which may have been partially due to the overgrowth of specific bacterial strains with inhibiting or competing effects on fungi. This study provides new insights into the interactions between fungi and bacteria of the intestinal microbiota and might offer new strategies to modulate gut microbiota equilibrium. Video Abstract.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Microbiota , Humanos , Camundongos , Animais , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Trato Gastrointestinal/microbiologia , Fungos , Bactérias/genética
13.
J Med Microbiol ; 72(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36951904

RESUMO

Introduction. In 2018, EUCAST released guidelines on rapid antimicrobial susceptibility testing (RAST) directly from positive blood culture bottles for selected bacterial species and antimicrobial agents, but not for the commonly used agents amoxicillin/clavulanate (AMC) and ampicillin/sulbactam (SAM).Hypothesis/Gap statement. This work addresses the Enterobacterales RAST capability gap for betalactam/betalactamase inhibitor combinations.Aim. We aimed to determine RAST breakpoints for AMC and SAM for Escherichia coli and Klebsiella pneumoniae after 4 and 6 h of incubation directly from positive blood cultures.Methodology. Blood culture bottles were spiked with clinical isolates of E. coli (n=89) and K. pneumoniae (n=81). RAST was performed according to EUCAST guidelines and zones were read after 4 and 6 h. Breakpoints were defined to avoid very major errors.Results. The proportion of readable zone diameters after 4 h of incubation were 90.8 % in E. coli and 85.8 % in K. pneumoniae isolates. After 6 h of incubation all zone diameters could be read. The proposed breakpoints for E. coli after 6 h of incubation were ≥16 mm S (susceptible), 14-15 mm ATU (area of technical uncertainty) and <14 mm R (resistant) for AMC; ≥15 mm S, 12-14 mm ATU and <12 mm R for SAM; for K. pneumoniae these were ≥16 mm S, 14-15 mm ATU and <14 mm R for AMC; ≥13 mm S, 12 mm ATU, <12 mm R for SAM. Applying our newly set breakpoints, major errors were infrequent (2.6 %).Conclusion. We propose novel AMC and SAM breakpoints for RAST directly from positive blood cultures for reading after 4 and 6 h of incubation.


Assuntos
Anti-Infecciosos , Sulbactam , Sulbactam/farmacologia , Hemocultura , Escherichia coli , Ampicilina/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
14.
Int J Antimicrob Agents ; 61(3): 106714, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640845

RESUMO

Burkholderia pseudomallei is a soil- and water-dwelling Gram-negative bacterium that causes melioidosis in humans and animals. Amoxicillin-clavulanic acid (AMC) susceptibility has been hailed as an integral part of the screening algorithm for identification of B. pseudomallei, but the molecular basis for the inherent AMC susceptibility of this bacterium remains undefined. This study showed that B. pseudomallei (and the closely-related B. mallei) wild-type strains are the only Burkholderia spp. that contain a 70STSK73 PenA Ambler motif. This motif was present in >99.5% of 1820 analysed B. pseudomallei strains and 100% of 83 analysed B. mallei strains, and is proposed as the likely cause for their inherent AMC sensitivity. The authors developed a polymerase chain reaction (PCR) assay that specifically amplifies the penA70ST(S/F)K73-containing region from B. pseudomallei and B. mallei, but not from the remaining B. pseudomallei complex species or the 70STFK73 region from the closely-related penB of B. cepacia complex species. The abundance and purity of the 193-bp PCR fragment from putative B. pseudomallei isolates from clinical and environmental samples is likely sufficient for reliable confirmation of the presence of B. pseudomallei. The PCR assay is designed to be especially suited for use in resource-constrained areas. While not further explored in this study, the assay may allow diagnosis of putative B. mallei in culture isolates from animal and human samples.


Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Melioidose , Animais , Humanos , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Melioidose/diagnóstico , Melioidose/microbiologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , beta-Lactamases , Domínio Catalítico , Reação em Cadeia da Polimerase
15.
J Periodontal Res ; 58(1): 143-154, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446019

RESUMO

BACKGROUND AND OBJECTIVE: Weak direct current (DC) exerts killing effect and synergistic killing effect with antibiotics in some specific bacteria biofilms. However, the potential of weak DC alone or combined with periodontal antibiotics in controlling periodontal pathogens and plaque biofilms remains unclear. The objective of this study was to investigate whether weak DC could exert the anti-biofilm effect or enhance the killing effect of metronidazole (MTZ) and/or amoxicillin-clavulanate potassium (AMC) on subgingival plaque biofilms, by constructing an in vitro subgingival plaque biofilm model. METHODS: The pooled subgingival plaque and saliva of patients with periodontitis (n = 10) were collected and cultured anaerobically on hydroxyapatite disks in vitro for 48 h to construct the subgingival plaque biofilm model. Then such models were stimulated with 0 µA DC alone (20 min/12 h), 1000 µA DC alone (20 min/12 h), 16 µg/ml MTZ, 16 µg/ml AMC or their combination, respectively. Through viable bacteria counting, metabolic activity assay, quantitative real-time PCR absolute quantification and 16S rDNA sequencing analysis, the anti-biofilm effect of 1000 µA DC and enhanced killing effects of 1000 µA DC combined with antibiotics (MTZ, AMC or MTZ+AMC) were explored. RESULTS: The old subgingival plaque model (48 h) had no significant difference in total bacterial loads from subgingival plaque in situ, which achieved a similarity of 80%. The 1000 µA DC plus MTZ or AMC for 12 h showed a stronger synergistic killing effect than the same combination for 20 min. The metabolic activity was reduced to the lowest by DC plus MTZ+AMC, as 37.4% of that in the control group, while average synergistic killing effect reached 1.06 log units and average total bacterial loads decreased to 0.87 log units. Furthermore, the relative abundance of the genera Porphyromonas, Prevotella, Treponema_2, and Tannerella were decreased significantly. CONCLUSION: The presence of weak DC (1000 µA) improved the killing effect of antibiotics on subgingival plaque biofilms, which might provide a novel strategy to reduce their antibiotic resistance.


Assuntos
Antibacterianos , Placa Dentária , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Amoxicilina/farmacologia , Metronidazol/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Placa Dentária/tratamento farmacológico , Placa Dentária/microbiologia , Biofilmes , Resistência Microbiana a Medicamentos
16.
Behav Brain Res ; 439: 114244, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470419

RESUMO

Substance abuse is a worldwide problem with serious repercussions for patients and the communities where they live. Pregabalin (Lyrica), is a medication commonly used to treat neuropathic pain. Like other analgesic medications there has been concern about pregabalin abuse and misuse. Although it was initially suggested that pregabalin, like other gabapentinoids, has limited abuse liability, questions still remain concerning this inquiry. Changes in glutamate system homeostasis are a hallmark of adaptations underlying drug dependence, including down-regulation of the glutamate transporter 1 (GLT-1; SLC1A2) and the cystine/glutamate antiporter (xCT; SLC7A11). In this study, it was found that pregabalin (90 mg/kg) produces a conditioned place preference (CPP), indicative of reinforcing effects that suggest a potential for abuse liability. Moreover, like other drugs of abuse, pregabalin also produced alterations in glutamate homeostasis, reducing the mRNA expression of Slc1a2 and Slc7a11 in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). Amoxicillin clavulanic acid, a ß-lactam antibiotic, blocked the reinforcing effects of pregabalin and normalized glutamate homeostasis. These results suggest that pregabalin has abuse potential that should be examined more critically, and that, moreover, the mechanisms underlying these effects are similar to those of other drugs of abuse, such as heroin and cocaine. Additionally, these results support previous findings showing normalization of glutamate homeostasis by ß-lactam drugs that provides a novel potential therapeutic approach for the treatment of drug abuse and dependence.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio , Transtornos Relacionados ao Uso de Substâncias , Humanos , Combinação Amoxicilina e Clavulanato de Potássio/metabolismo , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Pregabalina/farmacologia , Núcleo Accumbens , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , beta-Lactamas/farmacologia , Glutamatos/metabolismo , Glutamatos/farmacologia , Ácido Glutâmico/metabolismo
17.
Appl Environ Microbiol ; 88(24): e0159322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448784

RESUMO

Early-life antibiotic exposure is associated with diverse long-term adverse health outcomes. Despite the immunomodulatory effects of gastrointestinal fungi, the impact of antibiotics on the fungal community (mycobiome) has received little attention. The objectives of this study were to determine the impact of commonly prescribed infant antibiotic treatments on the microbial loads and structures of bacterial and fungal communities in the gastrointestinal tract. Thirty-two piglets were divided into four treatment groups: amoxicillin (A), amoxicillin-clavulanic acid (AC), gentamicin-ampicillin (GA), and flavored placebo (P). Antibiotics were administered orally starting on postnatal day (PND) 1 until PND 8, except for GA, which was given on PNDs 5 and 6 intramuscularly. Fecal swabs were collected from piglets on PNDs 3 and 8, and sow feces were collected 1 day after farrowing. The impacts of antibiotics on bacterial and fungal communities were assessed by sequencing the 16S rRNA and the internal transcribed spacer 2 (ITS2) rRNA genes, respectively, and quantitative PCR was performed to determine total bacterial and fungal loads. Antibiotics did not alter the α-diversity (P = 0.834) or ß-diversity (P = 0.565) of fungal communities on PND 8. AC increased the ratio of total fungal/total bacterial loads on PND 8 (P = 0.027). There was strong clustering of piglets by litter on PND 8 (P < 0.001), which corresponded to significant differences in the sow mycobiome, especially the presence of Kazachstania slooffiae. In summary, we observed a strong litter effect and showed that the maternal mycobiome is essential for shaping the piglet mycobiome in early life. IMPORTANCE This work provides evidence that although the fungal community composition is not altered by antibiotics, the overall fungal load increases with the administration of amoxicillin-clavulanic acid. Additionally, we show that the maternal fungal community is important in establishing the fungal community in piglets.


Assuntos
Microbioma Gastrointestinal , Micobioma , Animais , Feminino , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Fungos , RNA Ribossômico 16S/genética , Suínos
18.
Chemotherapy ; 67(4): 261-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417841

RESUMO

INTRODUCTION: Community-acquired urinary tract infections (UTIs) caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli have limited oral therapeutic options and pose significant clinical challenges. The goal of this study was to evaluate the in vitro synergy between CFM and AMC against ESBL E. coli with aims to identify an oral treatment option for UTIs. METHODS: Minimum inhibitory concentrations (MICs) of CFM in the presence of AMC were determined for 46 clinical isolates by placing a CFM Etest on a plate with AMC impregnated in the agar. Isolates with CFM MIC ≤1 µg/mL in the presence of AMC were considered susceptible to the CFM and AMC combination. Five isolates were then selected for further testing using time-kill analysis in the presence of CFM, AMC, and CFM with AMC. Time-kill curves were plotted to determine synergy over 24 h. RESULTS: AMC improved the activity of CFM against ESBL E. coli isolates by 128-fold in the Etest analysis with 85% of tested isolates being susceptible to the combination. A fourfold or greater reduction in CFM MIC was exhibited in 44 of 46 (96%) isolates when in the presence of AMC. Synergy and bactericidal activity between CFM and AMC were exhibited in each of the five isolates tested by time-kill analysis. DISCUSSION/CONCLUSION: This study found that AMC improves the activity of CFM against ESBL E. coli and that this antibiotic combination has potential as an oral therapeutic option to treat ESBL E. coli UTIs.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Humanos , Cefixima/farmacologia , Cefixima/uso terapêutico , Escherichia coli , beta-Lactamases , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções por Escherichia coli/tratamento farmacológico , Infecções Urinárias/tratamento farmacológico
19.
J Glob Antimicrob Resist ; 31: 222-227, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195280

RESUMO

OBJECTIVES: Haemophilus influenzae is a prevalent agent of respiratory infections, including acute otitis media (AOM), that lead to high antibiotic prescription and may contribute to the development of bacterial resistance to antibiotics. The objective of this work was to describe and analyse antibiotic resistance of H. influenzae from 2017 to 2021 in France. METHODS: We characterized H. influenzae isolates transmitted to the French national reference centre for H. influenzae between 2017 and 2021. We included all the 608 non-invasive respiratory isolates. Resistance rates to the main antibiotics were described. The relationship between resistance rate, age, and sex of patients and germ serotype was investigated. RESULTS: Isolates were mainly from alveolar lavage (29.3%), expectoration (22.9%), or sputum (15%). Resistance to amoxicillin (61.4%), amoxicillin/clavulanic acid (47.4%), and cefotaxime (39.3%) was high and correlated with the presence of ß-lactamase and/or modifications of the ftsI gene encoding penicillin-binding protein 3. Resistance to sulfamethoxazole/trimethoprim (33.2%) was more moderate. There were no significant differences according to serotype, age, or gender. CONCLUSIONS: The benefit/risk balance of first choice use of amoxicillin and even of amoxicillin/clavulanic acid in AOM is questionable in view of the significant resistance to H. influenzae. The use of sulfamethoxazole/trimethoprim could be an alternative but may still need further evaluation.


Assuntos
Haemophilus influenzae , Otite Média , Humanos , Testes de Sensibilidade Microbiana , Otite Média/tratamento farmacológico , Otite Média/microbiologia , Amoxicilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Resistência Microbiana a Medicamentos , Sulfametoxazol/uso terapêutico , Trimetoprima/uso terapêutico
20.
Front Cell Infect Microbiol ; 12: 959903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051239

RESUMO

Introduction: The use of antibiotics may induce the changes in gut microbiota. Previous studies have shown conflicting results on whether the changed gut microbiota by antibiotics can be recovered. Our study aims to investigate whether the gut microbiota could be recovered after a single dose of oral co-amoxiclav before transrectal ultrasound-guided transperineal prostate biopsy (TPPBx) in 5 weeks' time. Methods: Fifteen patients with elevated serum prostate-specific antigen (PSA) were recruited to provide pre-antibiotic and post-antibiotic fecal samples. The V4 region of 16S rRNA was sequenced. Analysis was performed by QIIME2. Alpha- and beta-diversities were analyzed, as well as the differential enrichment by Linear discriminant analysis Effect Size (LEfSe) analysis. Results: Both the alpha- and beta-diversities of the pre- and post-antibiotic fecal samples were significantly different. Genera that are associated with alleviation of inflammation were enriched in the pre-antibiotic fecal samples, while the inflammation-associated genera were more enriched in the post-antibiotic fecal samples. Conclusion: A single dose of oral co-amoxiclav before TPPBx could have led to a change of gut microbiota that cannot be recovered in 5 weeks' time. Microbiome studies on prostate cancer patients should be cautioned on the use of post-prostate biopsy fecal sampling. Further studies should be conducted for the impact on gut microbiome for TPPBx alone.


Assuntos
Microbioma Gastrointestinal , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Biópsia , Fezes , Humanos , Inflamação/patologia , Masculino , Próstata , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...